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Abstract
We revisit parasupersymmetric quantum mechanics of arbitrary order and
present a set of nontrivial relations, which characterizes the most general
multilinear part of the associated parasupersymmetric algebra. We then
show that the formulation of multilinear relations leads immediately to a
polynomial of parasupersymmetric Hamiltonian in terms of the corresponding
parasupercharges. The deduction of higher derivative supersymmetric quantum
mechanics directly via this parasupersymmetric formulation is discussed. The
complete degenerate structure of the energy spectrum for parasupersymmetric
quantum mechanics of order p is systematically analyzed. Finally, the notion
of cyclic symmetry is introduced and the algebra of cyclic charge operators of
arbitrary order is developed, based on the parasupersymmetric formalism.

PACS numbers: 03.65.−w, 03.65.Fd, 11.30.Pb

1. Introduction

Supersymmetry is the symmetry between bosonic and fermionic degrees of freedom. The idea
of supersymmetry was initially introduced to solve the hierarchy problem in quantum field
theories and has been playing a significant role in many branches of physics since that time. In
quantum mechanical systems, supersymmetric quantum mechanics (SQM) was investigated as
a testing ground to understand non-perturbatively supersymmetry-breaking [1]. In particular,
the technique of SQM allows us to establish various important properties in mathematical
physics, such as the class of solvable potentials, the degeneracy of the energy spectrum, the
relations among isospectral Hamiltonians, etc [2–6]. For a review of SQM, please refer to
[7–9] and references therein.

The basic property of one-dimensional SQM of one boson and one fermion degrees of
freedom is easily motivated by the fermionic annihilation and creation operators f and f †,
which satisfy the commutation relations

(f )2 = 0 = (f †)2, {f, f †} = ff † + f †f = 1, (1)
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and are conveniently represented by the 2 × 2 matrices:

f =
(

0 0
1 0

)
, f † =

(
0 1
0 0

)
. (2)

In terms of f and f †, we readily formulate two supercharges Q and Q† of SQM by

Q = Af =
(

0 0
A 0

)
, Q† = A†f † =

(
0 A†

0 0

)
, (3)

where A = p̂ + iW(x) and A† = p̂ − iW(x) are the first-order differential operators. Here,
p̂ = −i∂x is the momentum operator and W(x) is the superpotential.

Based on the two supercharges Q and Q† (3), the algebra of one-dimensional SQM can
be described as

Q2 = 0 = (Q†)2, [H,Q] = 0 = [H,Q†], QQ† + Q†Q = 2H, (4)

where H is the supersymmetric Hamiltonian and takes the form

H =
(

H1 0
0 H2

)
=

( 1
2A†A 0

0 1
2AA†

)
. (5)

It is known that supersymmetry may or may not be broken. The situation is characterized
by the Witten index �F , which is defined by the difference between the number of zero-
energy states of the partner Hamiltonians H1 and H2. The same Witten index can also be
defined by the asymptotic behavior of the superpotential W(x) [8]. In a supersymmetric
nonperiodic quantum system in one dimension, the consequence of equation (4) is that, for
unbroken supersymmetry (�F �= 0), all the positive energy states are twofold degenerate and
the zero-energy ground state is always nondegenerate. In addition, for broken supersymmetry
(�F = 0), there is no zero-energy ground state and all energy eigenstates are therefore twofold
degenerate. However, it was pointed out in [10, 11] that a supersymmetric periodic quantum
system may produce two zero-energy ground states, resulting in a completely isospectral pair
of partner Hamiltonians. If this happens, we will have �F = 0 even in the case of unbroken
supersymmetry. A typical example of supersymmetric periodic quantum systems investigated
is that the partner potentials have identical band structures, and are self-isospectral in the sense
that the potentials are the same in shape but differ merely by a half-period translation. Other
self-isospectral examples can be found in the recent articles [12].

We note that in one-dimensional SQM the statement that all positive energy levels are
twofold degenerate is valid only in the case of a discrete spectrum. If the spectra of the partner
Hamiltonians admit a continuous spectrum, the corresponding energy levels will become
fourfold degenerate. Generalized from this property, it can be shown that supersymmetric
periodic quantum systems with a parity-even finite-gap potential can exhibit a very peculiar, the
so-called tri-supersymmetric structure that originates from a hidden bosonized supersymmetry
[12, 13].

Besides the ordinary supersymmetry, there is an extended version called
parasupersymmetry [14], based on the notion of parastatistics [15]. In brevity,
parasupersymmetry of order p describes the symmetry between bosons and parafermions
of order p, and admits intrinsically p copies of ordinary supersymmetry. The algebra of
parasupersymmetric quantum mechanics (PSQM) of order 2 was introduced by Rubakov
and Spiridonov [14]. The formulation of PSQM of arbitrary order has been generalized by
Khare [16], and with a modified version by Beckers and Debergh [17]. Many important
results have since been obtained [18–23]. Though it is a direct generalization of the ordinary
SQM, the PSQM actually suffers from one unsatisfactory feature that does not occur in the
ordinary SQM. The unsatisfactory feature is that the parasupersymmetric Hamiltonian cannot

2



J. Phys. A: Math. Theor. 43 (2010) 115302 Y R Huang and W-C Su

be directly expressed in terms of the associated parasupercharges. As far as we are aware, this
problem has remained unsolved until today.

The purpose of the present paper is to take a fresh look at this problem and to resolve it.
We will first establish a general set of multilinear relations which the parafermionic creation
and annihilation operators a† and a fulfill. Then we show that a similar set of multilinear
relations exists for the parasupercharges Q and Q†, too. One of the key features regarding
the latter multilinear relations is that a polynomial combination of the parasupersymmetric
Hamiltonian H is found expressible in terms of the corresponding parasupercharges Q and
Q†. Based on our parasupersymmetric formulation, a brief discussion on the derivation of
higher derivative SQM will be given, and the complete degenerate structure of the energy
spectrum for PSQM of order p will be analyzed in a systematic way. At the end of the paper,
we introduce the notion of cyclic charge operators of arbitrary order and develop its associated
quantum mechanical algebra.

The paper is organized as follows. In section 2, we establish the general set of multilinear
relations between the parasupersymmetric Hamiltonian and the associated parasupercharges.
Some important aspects derivable from these multilinear relations are discussed. In section 3,
the degenerate structure of the energy spectrum for PSQM is analyzed in detail. In section 4,
the notion of cyclic symmetry of arbitrary order is introduced and the associated algebra of
the cyclic operators is constructed. Section 5 is devoted to a discussion of the obtained results.

2. Relations between the parasupersymmetric Hamiltonian and parasupercharges

This section contains two parts. In the first part, to have a self-contained presentation, we
briefly review and reproduce the relevant properties of PSQM of order p of [16]. Some of
the results are quoted without proof for brevity. In the second part, we construct a general
set of multilinear relations that are satisfied by the parasupersymmetric charges and the
parasupersymmetric Hamiltonian. Two remarks concerning the multilinear relations will be
made at the end of the section.

The parasupersymmetric generalization of the ordinary SQM algebra is straightforward. It
is achieved by replacing the fermionic operators f and f † in equation (1) by the corresponding
parafermionic counterparts a and a† of arbitrary order p (p = 1, 2, 3, . . .). The parafermionic
creation and annihilation operators a† and a are known to satisfy the algebra [24]

(a)p+1 = 0 = (a†)p+1, [[a†, a], a] = −2a, [[a†, a], a†] = 2a†, (6)

as well as the following nontrivial multilinear relation (and its Hermitian-conjugated one) [16]

apa† + ap−1a†a + · · · + aa†ap−1 + a†ap = 1
6p(p + 1)(p + 2)ap−1, (7)

where the left-hand side has (p + 1) terms. When p = 1, it obviously reduces to equation (1),
that is, the bilinear relation of the fermionic operators f and f †.

At this stage, a useful representation for the parafermionic operators a and a†, which
fulfills equations (6) and (7), can be given by (p + 1) × (p + 1) matrices:

(a)αβ = Cβδα,β+1, (a†)αβ = Cβ−1δα+1,β , (8)

where α, β = 1, 2, . . . , (p + 1) and the coefficients Cβ are

Cβ =
√

β(p − β + 1) = Cp−β+1. (9)

Utilizing the above matrix realization (8), we formulate two parasupersymmetric charges Q
and Q† of PSQM of order p, much in the same way as the case in the SQM algebra. They are,
respectively,

(Q)αβ = Aβδα,β+1, (Q†)αβ = A
†
β−1δα+1,β , (10)
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where Aβ = p̂ − iWβ(x) and A
†
β = p̂ + iWβ(x) are p pairs of first-order differential operators,

for β = 1 to p. The properties of the p superpotentials Wβ(x) are to be specified.
Then with the help of the matrix forms for Q and Q† (10), one readily finds that the algebra

of PSQM of one boson and one parafermion of order p is characterized by the relations

(Q)p+1 = 0 = (Q†)p+1, [H,Q] = 0 = [H,Q†], (11)

QpQ† + Qp−1Q†Q + · · · + QQ†Qp−1 + Q†Qp = 2pHQp−1, (12)

and the Hermitian-conjugated one of equation (12). Here, the parasupersymmetric
Hamiltonian H is a diagonal (p + 1) × (p + 1) matrix:

(H)αβ = Hαδαβ, (13)

with the diagonal elements given by (i = 1, 2, . . . , p)

Hi = 1
2A

†
iAi + ci and Hp+1 = 1

2ApA†
p + cp, (14)

where c1, c2, . . . , cp are arbitrary constants that to be consistent with equation (12) are
related to one another by the identity

∑p

i=1 ci = 0. Meanwhile, the requirement that the
parasupersymmetric Hamiltonian H commute with the parasupercharges Q and Q† imposes
(p − 1) conditions on the p superpotentials (k = 2, 3, . . . , p):

1
2Ak−1A

†
k−1 + ck−1 = 1

2A
†
kAk + ck. (15)

Let us summarize here some basic properties of PSQM of order p. Equations (11)–(15)
are sufficient to prove the following statements. (i) The spectrum of the parasupersymmetric
Hamiltonian H of order p is (p + 1)-fold degenerate at least starting from the pth and higher
excited states. (ii) The nature of the ground state and the first (p − 1) excited states
depends on the specific form of the p superpotentials Wβ(x). (iii) There are p ordinary
super-Hamiltonians that can be associated with the parasupersymmetric Hamiltonian of order
p. (iv) For some particular superpotentials, the parasupersymmetric Hamiltonian of order p
describes one-dimensional motion of a spin- p

2 particle in a magnetic field. (v) Apart from
the parasupercharges Q and Q† defined in equation (10), there exist (p − 1) other sets of
conserved, independent parasupercharges, all of which also satisfy the PSQM algebra (11)
and (12).

As mentioned earlier, the formulation of PSQM described has an unsatisfactory feature,
which is that, unlike in SQM, we are unable to write the parasupersymmetric Hamiltonian H
(13) directly in terms of the associated parasupercharges Q and Q†. Because the inverse of
Qp−1 dose not exist, equation (12) cannot be simply inverted to get the parasupersymmetric
Hamiltonian H on one side and the parasupercharges Q and Q† on the other side.

To solve this problem, let us choose to consider a more general set of multilinear relations
satisfied by the parafermionic operators a and a† of order p. The general set of relations, that
by construction contains equation (7) as a special case, is given by

p∑
m=0

ap−ma†p−q
am = apa†p−q

+ ap−1a†p−q
a + · · · + aa†p−q

ap−1 + a†p−q
ap, (16)

where q is an integer and takes values in the interval [ 0, p − 1 ]. There are (p + 1) terms
on the right-hand side. Obviously, equation (16) equals the left-hand side of equation (7) for
q = p − 1 and becomes trivial identity for either q = p or q � −1.
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Now making use of equation (8) for the parafermionic operators a and a†, we easily obtain
in matrix components the set of relations defined by equation (16) as1

p∑
m=0

(ap−ma†p−q
am)αβ =

p∑
m=0

∑
σ,τ

[
p−m∏
i=1

Cσ+i−1

]
δα,σ+p−m

×
[

p−q∏
j=1

Cσ+j−1

]
δσ+p−q,τ

[
m∏

k=1

Cβ+k−1

]
δτ,β+m, (17)

where α, β = 1, 2, . . . , (p + 1). Because of the presence of Kronecker deltas, the summation
in the index τ can be performed immediately. The outcome is that the summation indices m
and σ are constrained within the region of parallelogram: max(1, q + m + 1 − p) � σ �
min(m + 1, q + 1). At the same time, the index α takes values in the interval [ q + 1, p + 1 ] and
the index β = α − q. The summation over m can then be carried out, resulting in the index σ

in the allowed range: 1 � σ � q + 1, for a fixed α. After performing both summations, we
arrive at

p∑
m=0

(ap−ma†p−q
am)αβ =

q+1∑
σ=1

[
α−1∏
i=σ

Ci

][
σ+p−q−1∏

j=σ

Cj

][
σ+p−q−1∏
k=α−q

Ck

]
δα,β+q,

=
q+1∑
σ=1

[
σ+p−q−1∏

i=σ

C2
i

]
(aq)αβ, (18)

where we have used equation (8) and the identity
∏α−1

k=α−q Ck = ∏q

k=1 Cβ+k−1.
An important observation regarding equation (18) is that the set of multilinear

relations (16) as a whole behaves like a definite (p + 1) × (p + 1) matrix. It is a
matrix proportional to the qth powers of the parafermionic annihilation operator a, with
the proportionality constant

q+1∑
σ=1

[
σ+p−q−1∏

i=σ

C2
i

]
= ((p − q)!)2

(
2p − q + 1

q

)
. (19)

Here, equation (9) has been used for the computation of the coefficient C2
i and the symbol(

m

n

) = m!/n!(m − n)! denotes the binomial coefficient. Consequently, by combining
equations (18) and (19), we establish the needed result of the multilinear relations (plus
the Hermitian-conjugated ones) of the parafermionic operators a and a† as

p∑
m=0

ap−ma†p−q
am = ((p − q)!)2

(
2p − q + 1

q

)
aq. (20)

It is easily checked that when q = p − 1, equation (20) as desired reproduces
equation (7). Especially, when q = 0 the right-hand side of equation (20) contains no
parafermionic operator a and becomes a pure number! This special relation reads

p∑
m=0

ap−ma†pam = (p!)2. (21)

1 From the matrix representation (8), the mth powers of the parafermionic operators a and a† are, respectively,

(am)αβ =
[

m∏
i=1

Cβ+i−1

]
δα,β+m, (a†m)αβ =

[
m∏

i=1

Cβ−i

]
δα+m,β .
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The existence of the set of multilinear relations for the parafermionic operators a and
a† (20) strongly suggests that we may have a similar set of multilinear relations for the
parasupercharges Q and Q† in the algebra of PSQM of order p. Further, such a set if it exists
in the PSQM is expected to be very compact, as well. Hence, let us try to construct the set of
multilinear relations for the parasupercharges. Similar to equation (16), we write the general
set of multilinear relations satisfied by the parasupercharges Q and Q† of order p by

p∑
m=0

Qp−mQ†p−q
Qm, (22)

where q is an integer and takes values in the interval [0, p − 1]. Note that equation (22) has
(p + 1) terms and becomes equation (12) for q = p − 1.

Equation (22) can be readily worked out by the matrix representation of parasupercharges
Q and Q† in equation (10). The computation is straightforward; hence, let us list the results
for the first three values of order p. The case of order p = 1 is trivial, and is shown in
equation (4). The first nontrivial case is of order p = 2. After a short algebra, we find

Q2Q† + QQ†Q + Q†Q2 = 2
2∑

i=1

(H − ci)Q, (23)

Q2Q†2
+ QQ†2

Q + Q†2
Q2 = 22

2∏
i=1

(H − ci), (24)

where c1 + c2 = 0 is understood. The next nontrivial case is p = 3. It is not hard to construct
these relations (with c1 + c2 + c3 = 0)

Q3Q† + Q2Q†Q + QQ†Q2 + Q†Q3 = 2
3∑

i=1

(H − ci)Q
2, (25)

Q3Q†2
+ Q2Q†2

Q + QQ†2
Q2 + Q†2

Q3 = 22
2∑

i=1

[
i+1∏
j=i

(H − cj )

]
Q, (26)

Q3Q†3
+ Q2Q†3

Q + QQ†3
Q2 + Q†3

Q3 = 23
3∏

i=1

(H − ci). (27)

The computation of equation (22) extended to arbitrary order p can be similarly calculated.
At the end of the day, we establish the general set of multilinear relations fulfilled by the
parasupercharges Q and Q† of arbitrary order p (and its Hermitian-conjugated set) in this
compact expression

p∑
m=0

Qp−mQ†p−q
Qm = 2p−q

q+1∑
i=1

[
i+p−1−q∏

j=i

(H − cj )

]
Qq, (28)

where H is the parasupersymmetric Hamiltonian defined in equation (13) and ci are the same
constants given in equation (14), satisfying

∑p

i=1 ci = 0.
It is now easily checked from equation (28) that when q = p − 1, we recover

equation (12). In particular, when q = 0 we obtain an instructive relation that is a homogeneous
bi-multilinear relation in Q and Q† as

QpQ†p + Qp−1Q†pQ + · · · + QQ†pQp−1 + Q†pQp = 2p

p∏
i=1

(H − ci). (29)

6
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Note that the right-hand side of equation (29) contains solely the parasupersymmetric
Hamiltonian H, and no parasupercharges Q or Q†. In other words, via this equation a
polynomial form of the parasupersymmetric Hamiltonian H of order p is proved expressible
in terms of the corresponding parasupercharges Q and Q†.

Two remarks concerning equation (29) are in order at this stage. Other important aspects
of equation (29) are presented in the following two sections.

(1) It seems that equation (29) is more suitable than equation (12) to represent the generalized
version of the anticommutation relation, that is, QQ† + Q†Q = 2H , in the SQM algebra.
The reason is that equation (29) and the anticommutation relation in SQM share the
same equational structure, where the supercharges (parasupercharges) are on one side
and the super-Hamiltonian (parasupersymmetric Hamiltonian) is on the other side of
the equation. Therefore, we can restate the algebra of PSQM of order p by using
equation (29) as follows. The algebra of PSQM of order p is characterized by the
parasupercharges Q and Q†, which satisfy equation (11) as well as the nontrivial
multilinear relation (29).

(2) Based on equation (29), we can readily translate the formulation of PSQM of order
p into that of the higher derivative supersymmetric quantum mechanics (HSQM) of
order p. Here, the term ‘higher derivative SQM’ is also named as ‘nonlinear SQM’ in
the literature of supersymmetry. Since the relation between parasupersymmetry and
nonlinear supersymmetry has been reported [25, 26], we thus concentrate on how
equation (29) really works. Technically, HSQM is characterized by the standard
supersymmetry algebra, but with supercharges involve higher order differential operators
[27]. In the literature [28–31], the second-order HSQM has been discussed extensively
in the context of spectral design, where one or two more energy levels are allowed to
create above the ground-state energy level of the initial Hamiltonian. It is also possible to
generate supersymmetric complex potentials with real energy eigenvalues in the formalism
of HSQM. Moreover, it is recently found that a special nonlinear supersymmetry of the
reflectionless Pöschl–Teller system is originated by the Aharonov–Bohm effect for a
nonrelativistic particle on the AdS2 surface. Consequently, the correspondence between
these two quantum systems can be further explained within the framework of AdS/CFT
holography [32].

The procedure of translation from PSQM to HSQM is as follows. We note that
equation (29) represents a (p + 1) × (p + 1) matrix equation, which in components only
has nonvanishing diagonal elements. To be more specific, the right-hand side of this
equation is diagonal, since it is written purely in the parasupersymmetric Hamiltonian
H. The left-hand side can also be shown to be diagonal, with the first diagonal element
being Q†pQp, the second element QQ†pQp−1, the third element Q2Q†pQp−2, . . ., and
the (p + 1)st element QpQ†p. Now, the pth-order HSQM can be constructed with ease
through equation (29) by truncating all of its intermediate components, and keeping only
its first and last diagonal components alive. As a result, the original (p + 1) × (p + 1)

matrix equation is reduced to a 2 × 2 one, which takes the simple form [26]

{Q̃, Q̃†} = Q̃Q̃† + Q̃†Q̃ = 2p

p∏
i=1

(H̃ − ci). (30)

Here, H̃ as a 2 × 2 matrix defines the super-Hamiltonian of pth-order HSQM:

H̃ =
(

H1 0
0 Hp+1

)
, (31)

7
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and Q̃ and Q̃† are pth-order supercharges constructed from the parasupercharges Q and
Q† via the identification Q̃ ∼ Qp and Q̃† ∼ Q†p. Explicitly, they are given by the
respective 2 × 2 matrices:

Q̃ =
(

0 0
ApAp−1 · · · A1 0

)
, Q̃† =

(
0 A

†
1A

†
2 · · · A†

p

0 0

)
, (32)

where both supercharges Q̃ and Q̃† involve pth-order differential operators. The
anticommutation relation (30) together with the relations Q̃2 = 0 = (Q̃†)2 and
[Q̃, H̃ ] = 0 = [Q̃†, H̃ ] defines the algebra of pth-order HSQM.

3. Degenerate structure of the spectrum

The degenerate structure of the energy spectrum of PSQM of order p is systematically
discussed in this section. We will restrict our discussion on the parasupersymmetric quantum
systems that admit only discrete spectrum, and no continuous one. It has been mentioned in
section 2 that the spectrum of the parasupersymmetric Hamiltonian H of order p is (p +1)-fold
degenerate at least starting from the pth and higher excited states, and that the degeneracy
of the ground state and the first (p − 1) excited states depends on the specific form of the p
superpotentials Wi(x).

We hence divide the entire energy spectrum into an upper portion spectrum that is (p +1)-
fold degenerate, and a lower portion one that is at most p-fold degenerate. In other words, the
lower portion spectrum can be nondegenerate, twofold degenerate, . . ., or up to the maximal
p-fold degenerate. The detailed structure of the lower portion spectrum will depend on the
normalizability of the 2p functions ψ

(i)
± (x) constructed in terms of p superpotentials [14]

ψ
(i)
± (x) = exp

[
±

∫ x

Wi(x
′) dx ′

]
, (33)

where i = 1, 2, . . . , p. Below, we will analyze various properties of the lower portion spectrum
of PSQM, which include the energy eigenvalues, the number of possible degenerate cases, the
reflection symmetry of the spectrum and the status of broken or unbroken parasupersymmetry.
To learn some of these properties appropriately in PSQM, let us start with the simplest case,
that is, the SQM.

(1) The case of p = 1. If supersymmetry is unbroken, the lower portion spectrum of
SQM contains a single nondegenerate zero-energy ground state. If supersymmetry is
broken, there is no such lower portion spectrum, because all the energy levels are twofold
degenerate and by definition belong to the upper portion one. We can understand this fact
by introducing a combined state for the lower portion spectrum as

|
(1)〉 = |n1, n̄1〉 =
(

n1ψ
(1)
+

n̄1ψ
(1)
−

)
, (34)

where the pair of constants (n1, n̄1) can take values on (0, 0), (1, 0) or (0, 1), depending
on the normalizability of ψ

(1)
+ and ψ

(1)
− . Note that nonzero n1 and n̄1 cannot coexist.

For (n1, n̄1) �= (0, 0), the super-Hamiltonian H acting on the combined state |n1, n̄1〉
renders a zero-energy result: H |n1, n̄1〉 = 0. Similarly, when equation (29) with p = 1,
that is, QQ† + Q†Q = 2H , is applied on the same state |n1, n̄1〉, the right-hand side
vanishes automatically. To get a consistent result, we must have on the left-hand side of
the equation that Q|n1, n̄1〉 = Q†|n1, n̄1〉 = 0. This results in the well-known condition on
the ground state of the super-Hamiltonian for supersymmetry to be unbroken.

8
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There are two possible ground states in the lower portion spectrum of SQM,
namely |n1, 0〉 or |0, n̄1〉. These two ground states can be mapped to each other,
|n1, 0〉 ↔ |0, n̄1〉, by the reflection symmetry n1 ↔ n̄1, which originates from the
interchange of superpotential W(x) ↔ −W(x). In short, for unbroken supersymmetry,
we have two possible structures for the lower portion spectrum. Upon imposing the
reflection symmetry, we are left with only one possibility. Finally, as far as the broken
supersymmetry is concerned, it is signified by the choice of the pair (n1, n̄1) = (0, 0).

(2) The case of p = 2. The detailed structure of the energy spectrum of PSQM of order 2 has
been studied [14]. It is known that its lower portion spectrum can be non-degenerate or
twofold degenerate. Similar to the case of SQM, we can describe the complete structure
of the lower portion spectrum by the combined state

|
(2)〉 = |n1, n̄1 + n2, n̄2〉 =

⎛
⎜⎜⎝

n1ψ
(1)
+

n̄1ψ
(1)
− + n2ψ

(2)
+

n̄2ψ
(2)
−

⎞
⎟⎟⎠ , (35)

and by those states that are obtainable from this combined state by the action of the
associated parasupercharges: Q|
(2)〉 and Q†|
(2)〉. Explicitly, we have

Q|
(2)〉 =
⎛
⎝ 0

0

n̄1A2ψ
(1)
−

⎞
⎠ , Q†|
(2)〉 =

⎛
⎝n2A

†
1ψ

(2)
+

0
0

⎞
⎠ . (36)

Here, the both pairs of constants (n1, n̄1) and (n2, n̄2) take values on (0, 0), (1, 0) or
(0, 1). Similarly, nonzero ni and n̄i cannot coexist, for i = 1, 2.
To proceed the discussion, we exclude for the moment the possibility that both pairs can
vanish simultaneously, that is, (n1, n̄1) = (n2, n̄2) = (0, 0) is excluded. Then, it can be
shown that the parasupersymmetric Hamiltonian H obeys these equations

H |n1, n̄1 + n2, n̄2〉 = c1|n1, n̄1, 0〉 + c2|0, n2, n̄2〉, (37)

(H − c1)(H − c2)|n1, n̄1 + n2, n̄2〉 = 0. (38)

Hence, the combined state (35) is a generic composition of eigenstates of energy c1 and
c2, respectively. When the combined state is acted on by equation (24) (and its Hermitian-
conjugated equation), we obtain the following equations, describing how this combined
state can be kept invariant under the combinations of parasupercharges (for m = 0, 1):

Q2Q†m|n1, n̄1 + n2, n̄2〉 = 0, Q†2
Qm|n1, n̄1 + n2, n̄2〉 = 0. (39)

The result of equation (39) is quite instructive, since it represents the necessary
condition for the lower portion spectrum of PSQM to preserve parasupersymmetry
of order 2. We therefore reach the conclusion that equation (39) is a naturally
parasupersymmetric generalization of the corresponding condition on the ground state
for unbroken supersymmetry, that is, Q|n1, n̄1〉 = Q†|n1, n̄1〉 = 0. Obviously, the case of
broken parasupersymmetry is detected by the choice (n1, n̄1) = (n2, n̄2) = (0, 0), where
equation (39) is not fulfilled.

Because each pair of (ni, n̄i) has three choices, the total number of possible structures
for the lower portion spectrum is (32 − 1) = 8, for parasupersymmetry to be unbroken.
The reflection symmetry of the lower portion spectrum can be denoted by the interchanges:
n1 ↔ n̄2 and n̄1 ↔ n2, or equivalently, denoted by W1(x) ↔ −W2(x) and c1 ↔ c2.
Under the action of this reflection, the eight possible structures transform as

9
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|n1, 0, n̄2〉 ↔ |n1, 0, n̄2〉, |0, n̄1 + n2, 0〉 ↔ |0, n̄1 + n2, 0〉, (40)

|n1, 0, 0〉 ↔ |0, 0, n̄2〉, |0, n̄1, 0〉 ↔ |0, n2, 0〉, |n1, n2, 0〉 ↔ |0, n̄1, n̄2〉. (41)

Thus, only five distinct structures exist for the lower portion spectrum of PSQM of order 2.
Among them, the lower portion spectrum described by the state |0, n̄1 + n2, 0〉 is simplified,
because for nonvanishing n̄1 and n2 we must have c1 = c2 and W1(x) = −W2(x).
In summary, for unbroken parasupersymmetry of order 2, there are eight different
possibilities for the lower portion spectrum, and only five survive by the reflection
symmetry.

(3) The case of arbitrary order p. The lower portion of the spectrum of PSQM of order p
can be at most p-fold degenerate. The detailed degenerate structure of the lower portion
spectrum can be represented by the combined state

|
(p)〉 = |n1, n̄1 + n2, n̄2 + n3, . . . , n̄p〉 =

⎛
⎜⎜⎜⎜⎜⎜⎝

n1ψ
(1)
+

n̄1ψ
(1)
− + n2ψ

(2)
+

n̄2ψ
(2)
− + n3ψ

(3)
+

· · ·
n̄pψ

(p)
−

⎞
⎟⎟⎟⎟⎟⎟⎠

, (42)

plus the states that are constructed from this combined state by successive application of
the parasupercharges: Qm|
(p)〉 and Q†m|
(p)〉, where m = 1, 2, . . . , p−1. Similarly,
the p pairs of (ni, n̄i), for i = 1, 2, . . . , p, take values on (0, 0), (1, 0) or (0, 1). Again,
nonzero ni and n̄i cannot coexist, for each value of i.

When the pth-order parasupersymmetric Hamiltonian is applied on the above
combined state |
(p)〉, we get

H |n1, n̄1 + n2, n̄2 + n3, . . . , n̄p〉 =
p∑

i=1

ci |0, . . . , 0, ni, n̄i , 0, . . . , 0〉, (43)

p∏
i=1

(H − ci)|n1, n̄1 + n2, n̄2 + n3, . . . , n̄p〉 = 0. (44)

The combined state (42) is thus composed of the eigenstates of energy c1, c2, . . ., and
cp. Further, when this combined state is acted on by equation (29) and the Hermitian-
conjugated one, we obtain the necessary condition for the lower portion spectrum of PSQM
to preserve parasupersymmetry of order p. The condition reads (m = 0, 1, . . . , p − 1)

QpQ†m|n1, n̄1 + n2, n̄2 + n3, . . . , n̄p〉 = 0, (45)

Q†pQm|n1, n̄1 + n2, n̄2 + n3, . . . , n̄p〉 = 0. (46)

Note that the breaking of parasupersymmetry of order p is marked by the choice of all
constants (ni, n̄i) = (0, 0), for i = 1 to p.

For unbroken parasupersymmetry, the reflection symmetry of the lower portion
spectrum is obtained by the interchanges: ni ↔ n̄p+1−i , for i = 1, 2, . . . , p. The
same reflection can also be represented by the interchanges: Wi(x) ↔ −Wp+1−i (x) and
ci ↔ cp+1−i . In sum, it can be shown that there are (3p − 1) different structures for
the lower portion spectrum, all of which respect parasupersymmetry of order p. By

10
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the reflection symmetry, the independent number becomes 1
2 (3p + 3[p/2] − 2), where

[p/2] = m, for p = 2m or p = 2m + 1.
An interesting situation would occur, if we set all the constants c1 to cp vanishing

in equation (29). Then, all the nonzero energy eigenstates in the lower portion spectrum
will collapse to the eigenstate of zero energy. As a result, all the eigenstates in the upper
portion of the spectrum have only positive energies. If this happens, equation (29) leads
immediately to the fact that the parasupersymmetric Hamiltonian H of PSQM is directly
expressed in terms of the associated parasupercharges Q and Q† by

H = 1

2

[
p∑

m=0

Qp−mQ†pQm

]1/p

. (47)

Remember that the terms on the left-hand side of equation (29) are already diagonal and
non-negative, thus can be taken the pth root without causing any trouble. Equation (47)
gives a simpler formulation of PSQM of order p, in which all the energy eigenvalues are
non-negative and all the excited states are always (p + 1)-fold degenerate. Moreover,
the ground state has zero energy and is at most p-fold degenerate. Note that the
existence of nonzero vacuum energy in the Hamiltonian (47) signifies the breaking of
parasupersymmetry. Let us mention that an alternative formulation of PSQM, which also
leads to an explicit expression for the parasupersymmetric Hamiltonian in terms of the
parasupercharges, is discussed in [33].

4. Cyclic symmetry

We introduce the notion of cyclic symmetry and construct the associated cyclic algebra of
arbitrary order, based on the parasupersymmetric formulation established in section 2. The
cyclic symmetry of order p is characterized by the cyclic operators b and b†, which obey the
unity relation as [34, 35]

(b)p+1 = 1 = (b†)p+1, (48)

plus a set of multilinear relations (and the Hermitian-conjugated one) similar to equation (20).
See equation (51) for clarity. The existence of the multilinear relations for b and b† further
suggests that we should have the similar relations for the cyclic quantum charges Q and Q† in
the algebra of cyclic quantum mechanics of arbitrary order.

In fact, equation (48) can be easily deduced from the parasupersymmetric formulation.
For this, we write the cyclic operators b and b† in terms of the parafermionic operators a and
a† of order p as2

b ≡ a +
a†p

(p!)2
, b† ≡ a† +

ap

(p!)2
. (49)

Using the expression for the operators b and b†, we can readily check that the unity relation
(48) simply is a direct consequence of equation (21). Apparently, for p = 1, the cyclic
operators b and b† turn into the Hermitian operator f + f † given in equation (1).

2 Even though the cyclic operators b and b† are constructed directly from the parafermionic operators a and a† by
imposing cyclic symmetry, we will not call them the cyclic parafermionic operators. It is because that they do not
obey the defining parafermionic algebra, the second and third equations of equation (6).

11



J. Phys. A: Math. Theor. 43 (2010) 115302 Y R Huang and W-C Su

Furthermore, the cyclic operators b and b† satisfy a general set of multilinear relations that
resembles that of the parafermionic operators a and a† (20). Explicitly, the set of multilinear
relations for the cyclic operators of order p is given by

p∑
m=0

bp−mb†p−q
bm. (50)

The computation of equation (50) is straightforward. It can be carried out by using matrix
representation of the parafermionic operators a and a†, or alternatively, by using the method
of mathematical deduction. We will only present the results. After some algebra, the general
set of multilinear relations for the cyclic operators b and b† can be established in the form

p∑
m=0

bp−mb†p−q
bm =

[
((p − q)!)2

(
2p − q + 1

q

)
+

p−q∑
k=1

(p − k − q)!

(p − k + 1)!

(k − 1)!

(k + q)!

]
bq, (51)

where on the right-hand side the first coefficient inside the square bracket is the same as that
in equation (19), while the second one is a new contribution coming from the required cyclic
symmetry. In particular, when setting q = 0 we obtain the expression, in which the right-hand
side simplifies to a pure number,

p∑
m=0

bp−mb†pbm = (p!)2 +
p∑

k=1

1

k(p − k + 1)
. (52)

Now, we construct the algebra associated with the cyclic charge operators in cyclic
quantum mechanics of arbitrary order. In a similar fashion, the cyclic charge operators of
order p, denoted by Q and Q†, are given by the corresponding parasupercharges Q and Q† of
the same order as

Q ≡ Q +
Q†p

λp−1
, Q† ≡ Q† +

Qp

λp−1
, (53)

where the introduction of the dimensional parameter λ is to make the two cyclic charge
operators Q and Q† having the correct mass dimension. This implies that λ has the dimension
of mass. In fact, λ can be regarded as a tunable parameter that interpolates between cyclic
quantum mechanics and PSQM of the same order. As can be expected that when λ → ∞, the
former theory is reduced to the latter one.

The algebra of cyclic quantum mechanics of order p is then characterized by the cyclic
charge operators Q and Q† (53) that satisfy the following relations:

(Q)p+1 = (Q†)p+1 = 2p

λp−1

p∏
i=1

(H − ci), [H,Q] = 0 = [H,Q†], (54)

and a set of multilinear relations (plus its Hermitian-conjugated set) shown in equation (61).
Here, H is the cyclic Hamiltonian and has exactly the same form as the parasupersymmetric
Hamiltonian given in equations (13) and (14). The proof of both relations in equation (54) is
simple: the first relation is a direct consequence of equation (29) and the second relation is
trivial, since H by definition commutes with Q and Q†.

With regard to the set of multilinear relations fulfilled by the cyclic charge operators of
order p, it is given by the usual expression

p∑
m=0

Qp−mQ†p−qQm. (55)

In the same vein, this set of multilinear relations can be calculated for any arbitrary order. We
report the final computational results. For the case of p = 1, there is only one such multilinear
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relation: QQ† + Q†Q = 4H . For the case of p = 2, there are two multilinear relations that
are

Q2Q† + QQ†Q + Q†Q2 = 2

[
2∑

i=1

(H − ci) +
1

λ̃2

2∏
i=1

(H − ci)

]
Q, (56)

Q2Q†2
+ QQ†2Q + Q†2Q2 = 22

2∏
i=1

(H − ci)

[
1 +

1

λ̃2

2∑
i=1

(H − ci)

]
, (57)

where for simplicity we have introduced the rescaled parameter λ̃ = λ/
√

2. It is easily seen
that, if the parameter λ̃ → ∞, equations (56) and (57) are simplified to equations (23) and
(24), respectively. Furthermore, for the case of p = 3, we have three relations

3∑
m=0

Q3−mQ†Qm = 2

[
3∑

i=1

(H − ci) +
1

λ̃4

3∏
i=1

(H − ci)

]
Q2, (58)

3∑
m=0

Q3−mQ†2Qm = 22
2∑

i=1

[
i+1∏
j=i

(H − cj ) +
1

λ̃4

∏3
j=1(H − cj )

2∏i+1
k=i (H − ck)

]
Q, (59)

3∑
m=0

Q3−mQ†3Qm = 23
3∏

i=1

(H − ci)

[
1 +

1

λ̃4

3∑
j=1

∏3
k=1(H − ck)

(H − cj )

]
. (60)

The above three equations reduce to equations (25) to (27), as λ̃ goes to infinity.
Finally, for the case of general order p the set of multilinear relations satisfied by the

cyclic charge operators of order p is found to be
p∑

m=0

Qp−mQ†p−qQm = 2p−q

[
q+1∑
i=1

K(i, p − q) +
K(1, p)2

λ̃2(p−1)

p−q∑
i=1

1

K(i, q + 1)

]
Qq, (61)

where the function K(i, n) is defined by

K(i, n) ≡
i+n−1∏
k=i

(H − ck) = (H − ci)(H − ci+1) · · · (H − ci+n−1). (62)

There are n terms in the product function K(i, n). In particular, when q = 0, equation (61)
takes the homogeneous bi-multilinear form in the cyclic charges Q and Q† as

p∑
m=0

Qp−mQ†pQm = 2pK(1, p)

[
1 +

K(1, p)

λ̃2(p−1)

p∑
i=1

1

H − ci

]
. (63)

We note that when taking λ̃ → ∞, equations (61) and (63) reduce to equations (28) and (29),
respectively.

5. Conclusion

We have constructed, in the present paper, a general set of multilinear relations (28) that
are fulfilled by the parasupercharges Q and Q† in the framework of PSQM of arbitrary
order. One immediate consequence regarding this set of multilinear relations is that a
polynomial combination of the parasupersymmetric Hamiltonian H is shown expressible in
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terms of the associated parasupercharges (29). In particular, when all the energy parameters
ci, for i = 1, 2, . . . , p, are set to zero, the parasupersymmetric Hamiltonian by itself is
explicitly expressed by the corresponding parasupercharges (47). Moreover, based on our
parasupersymmetric formulation, the translation of PSQM of order p to HSQM (nonlinear
SQM) of the same order can be made quite transparent. Let us mention that the latter theory
can also be obtained by the hidden supersymmetric structure in pure parabosonic systems,
where the nonlinear supersymmetry is realized as a reduced parasupersymmetry [26].

We also study the structure of the energy spectrum of PSQM of order p in a systematic way.
We divide the whole spectrum into the upper portion spectrum that is (p + 1)-fold degenerate
and the lower potion spectrum that is at most p-fold degenerate. Then, the degenerate structure
of the lower portion spectrum can be analyzed by introducing the combined state defined in
equation (42), which is a linear composition of the eigenfunctions (33) constructed from
the corresponding superpotentials. We consequently establish the necessary condition for the
lower portion spectrum to respect parasupersymmetry of order p. This condition is shown to be
the parasupersymmetric generalization of that of the ground state for unbroken supersymmetry.
Further, the reflection symmetry of the lower portion spectrum is discussed and the number of
its distinct degenerate structures is determined.

In the final part of the paper, we introduce the notion of cyclic symmetry and develop
the algebra associated with the cyclic charge operators Q and Q† in the cyclically symmetric
quantum mechanics. The complete set of multilinear relations satisfied by the cyclic charge
operators of arbitrary order can be constructed, based on the formulation of PSQM. Here, to
define the cyclic charges consistently, a dimensional parameter λ needs to be introduced, which
in turns describes the tunable parameter that interpolates between cyclic quantum mechanics
and PSQM of the same order. Actually, the interpolating parameter λ has another interesting
limit that is when λ → 0. In this limit, the original set of multilinear relations (61) of the
cyclic charges Q and Q† will transform into a brand-new set of multilinear relations of the
parasupercharges Q and Q†. To illustrate this point, we take equation (63) as the example. In
the limit λ̃ → 0, this equation becomes

lim
λ̃→0

[
λ̃2(p−1)

p∑
m=0

Qp−mQ†pQm

]
= 2pK(1, p)2

p∑
i=1

1

H − ci

. (64)

After the limiting procedure on the left-hand side is taken, the terms inside the square bracket
can be shown to represent a more complicated multilinear combination of the parasupercharges
Q and Q†. The detailed expression is omitted here.

Acknowledgments

We would like to thank M S Plyushchay for valuable comments. This work was funded in
part by National Science Council in Taiwan (grant no NSC 98-2112-M-194-003.)

References

[1] Witten E 1981 Nucl. Phys. B 188 513
Cooper F and Freedman B 1983 Ann. Phys. 146 262

[2] Infeld L and Hull T E 1952 Rev. Mod. Phys. 23 21
[3] Gendenshtein L 1983 JETP Lett. 38 356
[4] Dutt R, Khare A and Sukhatme U 1986 Phys. Lett. B 181 295

Cooper F, Ginocchio J N and Khare A 1987 Phys. Rev. D 36 2458
Dabrowska J, Khare A and Sukhatme U 1988 J. Phys. A: Math. Gen. 21 L195
Cooper F, Ginocchio J N and Wipf A 1988 Phys. Lett. A 129 145

14

http://dx.doi.org/10.1016/0550-3213(81)90006-7
http://dx.doi.org/10.1016/0003-4916(83)90034-9
http://dx.doi.org/10.1103/RevModPhys.23.21
http://dx.doi.org/10.1016/0370-2693(86)90049-3
http://dx.doi.org/10.1103/PhysRevD.36.2458
http://dx.doi.org/10.1088/0305-4470/21/4/002
http://dx.doi.org/10.1016/0375-9601(88)90131-4


J. Phys. A: Math. Theor. 43 (2010) 115302 Y R Huang and W-C Su

[5] Levai G 1989 J. Phys. A: Math. Gen. 22 689
Chuan C 1991 J. Phys. A: Math. Gen. 24 L1165

[6] Khare A and Sukhatme U 1993 J. Phys. A: Math. Gen. 26 L901
Barclay D T, Dutt R, Gangopadhyaya A, Khare A, Pagnamenta A and Sukhatme U 1993 Phys. Rev. A 48 2786
Sukhatme U P, Rasinariu C and Khare A 1997 Phys. Lett. A 234 401

[7] Cooper F, Khare A and Sukhatme U 1995 Phys. Rep. 251 267
[8] Junker G 1996 Supersymmetric Methods in Quantum and Statistical Physics (Berlin: Springer)
[9] Bagchi B K 2000 Supersymmetry in Quantum and Classical Mechanics (London: Chapman and Hall)

[10] Braden H W and Macfarlane A J 1985 J. Phys. A: Math. Gen. 18 3151
[11] Dunne G V and Feinberg J 1998 Phys. Rev. D 57 1271
[12] Correa F, Jakubsky V, Nieto L-M and Plyushchay M S 2008 Phys. Rev. Lett. 101 030403

Correa F, Jakubsky V and Plyushchay M S 2008 J. Phys. A: Math. Theor. 41 485303
[13] Plyushchay M S 1996 Ann. Phys., NY 254 339

Correa F and Plyushchay M S 2007 Ann. Phys., NY 322 2493
[14] Rubakov V A and Spiridonov V P 1988 Mod. Phys. Lett. A 3 1337
[15] Green H S 1953 Phys. Rev. 90 270

Volkov D V 1960 Zh. Eksp. Teor. Fiz. 38 519
Volkov D V 1960 Zh. Eksp. Teor. Fiz. 39 1560
Greenberg O W and Messiah A M L 1965 Phys. Rev. B 138 1155

[16] Khare A 1992 J. Phys. A: Math. Gen. 25 L749
Khare A 1993 J. Math. Phys. 34 1277

[17] Beckers J and Debergh N 1989 Mod. Phys. Lett. A 4 1209
Beckers J and Debergh N 1989 Mod. Phys. Lett. A 4 2289
Beckers J and Debergh N 1990 J. Math. Phys. 31 1513
Beckers J and Debergh N 1990 J. Phys. A: Math. Gen. 23 L751
Beckers J and Debergh N 1990 J. Phys. A: Math. Gen. 23 L1073

[18] Durand S, Floeanini R, Mayrand M and Vinet L 1989 Phys. Lett. B 233 158
Durand S and Vinet L 1990 J. Phys. A: Math. Gen. 23 3661

[19] Spiridonov V 1991 J. Phys. A: Math. Gen. 24 L529
[20] Andrianov A and Ioffe M 1991 Phys. Lett. B 255 543

Andrianov A, Ioffe M, Spiridonov V and Vinet L 1991 Phys. Lett. B 272 297
[21] Merkel V 1990 Mod. Phys. Lett. A 5 2555

Merkel V 1991 Mod. Phys. Lett. A 6 3163
[22] Tomiya M 1992 J. Phys. A: Math. Gen. 25 4699
[23] Mostafazadeh A 1996 Int. J. Mod. Phys. A 11 1057

Mostafazadeh A 1997 Int. J. Mod. Phys. A 12 2725
[24] Ohnuki Y and Kamaefuchi S 1982 Quantum Field Theory and Parastatistics (University of Tokyo Press)
[25] Klishevich S and Plyushchay M S 1999 Mod. Phys. Lett. A 14 2739
[26] Plyushchay M 2000 Int. J. Mod. Phys. A 15 3679
[27] Andrianov A A, Ioffe M V and Spiridonov P V 1993 Phys. Lett. A 174 273
[28] Andrianov A A, Ioffe M V, Cannata F and Dedonder J P 1995 Int. J. Mod. Phys. A 10 2683
[29] Samsonov B F 1996 Mod. Phys. Lett. A 11 1563
[30] Fernández D J 1997 Int. J. Mod. Phys. A 12 171

Fernández D J, Glasser M L and Nieto L M 1998 Phys. Lett. A 240 15
[31] Rosas-Ortiz J O 1998 J. Phys. A: Math. Gen. 31 L507

Rosas-Ortiz J O 1998 J. Phys. A: Math. Gen. 31 10163
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